Reactive Programming Experience with REScala

Ragnar Mogk
Technische Universitat Darmstadt
Germany

ABSTRACT

Reactive programming is a recent programming paradigm that
specifically targets reactive applications. Over the years, a number
of reactive languages have been proposed, with different combina-
tions of features, and various target domains.

Unfortunately, there is a lack of knowledge about the experience
of developing software applications with reactive languages. As a
result, a number of design choices in reactive programming lan-
guages remain disconnected from experience and the applicability
of reactive programming to various domains remains unclear.

To bridge this gap, we report on our experience of developing
reactive applications as well as teaching reactive programming in
REScala, which we collected over several years of research and
practice.

CCS CONCEPTS

« Software and its engineering — Data flow languages;

KEYWORDS

Reactive Programming, Programming Experience, Programming
Paradigms, Language Design, Case Studies

ACM Reference Format:

Ragnar Mogk, Guido Salvaneschi, and Mira Mezini. 2018. Reactive Pro-
gramming Experience with REScala. In Proceedings of 2nd International
Conference on the Art, Science, and Engineering of Programming (<Program-
ming’18> Companion). ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3191697.3214337

1 INTRODUCTION

Reactive programming (RP) is a programming paradigm that aims
to expressing time-changing, interactive applications in purely func-
tional languages. RP has been studied intensively [6, 8-11, 15, 28, 29,
33, 36, 38, 40, 41] and has spread from the original purely functional
setting into imperative and object-oriented languages [3, 7, 21, 34].

However, little literature exists on developing applications in the
reactive paradigm beyond the small case studies used to exemplify
or evaluate each new RP language. As a result, not much is known
about the programming experience with the reactive paradigm. For
example, it is hard to evaluate if a RP language is a good fit for a
specific domain, to compare different RP language designs, or even

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

<Programming’18> Companion, April 9-12, 2018, Nice, France

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5513-1/18/04...$15.00
https://doi.org/10.1145/3191697.3214337

Guido Salvaneschi
Technische Universitat Darmstadt
Germany

105

Mira Mezini
Technische Universitat Darmstadt
Germany

to build knowledge about recurring problems when developing
with RP.

In this paper, we discuss our experience of developing reactive
applications with REScala [34], a RP language embedded into Scala.
Over the years, we used REScala to implement a number of case
studies and libraries, gaining insights regarding several aspects
of RP applications and languages including (1) the emergence of
common idioms and patterns, (2) the role of RP in various domains,
and (3) the design and the implementation of RP languages. For
(1), we investigate usage experience with RP regarding various
patterns that over the years emerged when using RP both in a
purely functional settings as well as when including RP as part of
imperative applications. Our case studies have been maintained
over a period of multiple years and by different people. For (2),
we consider RP libraries as well as standalone software and apply
RP to several application domains. This experience is particularly
important to gain insights about the applicability of RP to other
domains than simple GUIs and animations - the traditional target
of RP. For (3), we report on our experience with REScala specifically,
both as users and developers of the language, to provide insights on
how choices in the RP language design influence its use in reactive
applications.

We believe that sharing our experience helps researchers to
understand how RP is used effectively. It also guides developers to
decide whether RP is applicable in their domain, and it supports
designers of RP languages considering design tradeoffs.

The paper is structured as follows. Section 2 provides background
on RP required for the rest of the paper. Section 3 contains our
research questions, which share our experience in the different
aspects of RP. The questions are grouped according to the three
points above, and each questions can be read individually. Section 5
provides an overview of recent work on RP. Section 4 concludes.

2 REACTIVE PROGRAMMING
BACKGROUND

Today’s RP is derived from functional reactive programming (FRP).
FRP was first applied to functional modelling of animations [11].
Early FRP systems compute individual frames of an animation given
timestamp ¢ of the frame. FRP languages provide composable oper-
ators for the computation of frames. In these systems, computation
is synchronous and pull based, i.e., when the frame at time ¢ is re-
quested all operators are evaluated at that time and the resulting
values are pulled into one final result.

More recently, reactive programming has been introduced into
a number of mainstream languages mostly targeting interactive
applications in the GUI domain [6, 21]. In the interactive setting,
pull based evaluation of continuous time operators is found to be
inefficient, because all inputs events have to be stored and repro-
cessed every time a frame is requested. To solve the inefficiency,
push-based evaluation is introduced [10]. Input events are eagerly

https://doi.org/10.1145/3191697.3214337
https://doi.org/10.1145/3191697.3214337
https://doi.org/10.1145/3191697.3214337

<Programming’18> Companion, April 9-12, 2018, Nice, France

pushed into the reactive graph, the graph of connected operators.
For each input, operators recompute and cache their current value.
Evaluation is still synchronous, i.e., all reactions (recomputations of
operators) to an input event happen at the same time. The system
produces the current state now, and it is impossible to query past
or future timestamps ¢.

RP languages with synchronous semantics such as Flapjax [21]
or FrTime [6] are different from languages such as reactive exten-
sions [18], or stream processing systems [1, 42], where operators
are asynchronous, i.e., there is no concept of now. This gap inspired
researchers to combine asynchronous evaluation with synchronous
RP languages [8].

2.1 REScala

REScala [34] adopts the synchronous, push-based propagation
model, and supports two kinds of reactive abstractions, events and
signals for discrete or continuous time changing values. Signals and
events expose to the programmer a set of operators and conversions
operators between the two.

A signal always holds a value, and represents state in the pro-
gram, e.g., the current text of an input field. An event only has a
value when the event fires, and it represents actions that occur in
the program, e.g., when a button is clicked. The following example
demonstrates part of the REScala API:

1 // Vars are signals, that take imperative input
val text = Var("Textfield")

s // Evts are events, which are fired imperatively

4+ val click = Evt[Unit]

s // derives a signal, that counts the button clicks

o val derived: SignallInt] = click.count()
// combines two signals (+ is string concatenation)

s val label = Signal { text() + derived() }

o // read the current value of a signal

0 label.now // "Textfield 0"

1 //set the Var, every derived value updates

12 text.set("Button click") // "Button click 0"

13 //fire the evt, also automatic updates

1 click.fire() // "Button click 1"

15 //update multiple events and signals

16 transaction {

17 text.set("Transaction text")

18 click.fire()

19} // label text is "Transaction text 2"

//add an imperative callback

21 click.observe(_ => println("the button was clicked"))

var and Evt (Lines 2, 4) are created as inputs of changes from im-
perative code. Events and signals are derived from other events
and/or signals (Lines 6, 8), as long as no cyclic dependencies are
formed. Derived events or signals are automatically updated when-
ever an input changes (Lines 12, 14). The change is propagated
synchronously, i.e., when multiple inputs change as one update
(Line 16) then all derived events and signals are recomputed ex-
actly once for that update. Intermediate values are prevented — a
property called glitch freedom. Side effects are forbidden as part of
normal operators, however, operators such as count in Line 6 have

106

Ragnar Mogk, Guido Salvaneschi, and Mira Mezini

Table 1: REScala case studies

Case study Type LoC Domain
CRDTs Library 706 Distributed
Datastructures Library 688 Datastructures
Dividi Application 254 Distributed
Editor Application 1960 Text editing
Examples Application 1713 Misc

Mill game Application 428 Turn based
Paroli chat Application 100 Chat

Pong game Application 706 Realtime, distributed
Reactive streams Library 93 Asynchrony
REScalafx Library 70 GUI
REScalatags Library 87 GUI

Swing Library 1541 GUI

RSS Application 1338 Content reader
Shapes Application 1232 Drawing

Tests Tests 587 Mics

Todolist Application 177 Note taking
Universe Application 475 Simulation

internal state managed by the language, and user defined impera-
tive reactions (Line 21) are executed after a change has been fully
processed. We strongly recommend the REScala manual' and the
API documentation linked from the manual for details of specific
operators or functionality.

2.2 A Note on Scala Syntax

In the rest, we assume that Scala syntax is familiar to readers, or
can be inferred form similarities to other languages. To help readers
unfamiliar with Scala, some subtleties are clarified below:

1 // define a function
> { (x: Int, y: Int) => x +y }
3 // type annotations can be inferred, and braces and
parenthesis are often optional
+ stringEvent.map(someString => someString.length)
5 // unused parameters are named _
s event.observe(_ => println("observed"))
// parenthesis or braces are used interchangeably
s event.observe { _ => println("observed") }

Functions in Scala have very flexible syntax regarding the place-
ment of parenthesis, braces, and type annotations. In general, on
the left of => there is a list of parameters, and on the right there
is a sequence of statements for the function body (Line 2). The
type of function parameters and the scope of the function is often
provided by the surrounding context, e.g., in Line 4 the map oper-
ator of the Event[String] receives a function accepting a String.
Underscore indicates unused parameters (Line 6) and parenthesis
are interchangeable with braces (Line 8).

3 PROGRAMMING EXPERIENCE

Since the early development of REScala we implemented applica-
tions to verify the viability of the design of REScala. Since then,

lwww.rescala-lang.com/manual

Reactive Programming Experience with REScala

several people have been contributing to the project developing a
number of case studies. The most important case studies are shown
in Table 1.

The case studies cover different types of applications. Stan-
dalone applications provide self-contained functionalities. Reactive
libraries are reusable libraries that expose an API based on RP. Since
they heavily use reactive features, we also include the REScala test
cases. The size of the case studies is very diverse, ranging from few
lines of code to thousands lines of code (LoC column). Finally, the
case studies cover different applicative domains which include text
editing, simulation, graphics, and gaming (Domain column).

3.1 Idioms and Patterns

Certain idioms and patterns seem to reoccur in reactive programs,
and we elaborate how they help with maintainability and testing
of RP applications.

3.1.1 Idiomatic Code. As every programming paradigm, RP re-
quires a specific coding style that takes time to learn and refine.
Developers with an imperative background perform side effects on
shared state rather than opting for functional processing of event
streams. For example, to count how often an event is fired, a muta-
ble variable is updated inside of a map expression, and the value of
the variable is propagated:

var count = @

val mapped: Event[Int] = event.map { _ =>
count += 1 // bad: mutation inside operator
count

}

However, mutations of count outside of the map are ignored by the
language, and are hard to reason about. The idiomatic REScala
solution is to use fold, an operator with internal state managed
by the reactive language, that applies a user defined function to
generate the new state from the old state:

val counted: Signal[Int] =
event.fold(@) { (count, _) => count + 1 }
// or just ‘event.count®

In our experience, fold is adequate to model any stateful computa-
tions, but it requires programmers to understand purely functional
state management (e.g., using the accumulator and return value
to manage state). In some cases, it is necessary to handle multiple
events in the same fold to make the state accessible in all cases.
Examples are user interfaces, where a user modifies the same value
by entering text, or dragging a slider. Our case studies include an
example where an elevator computes the time it has spent wait-
ing on the current floor, depending on a reachedFloor event which
resets the value and a tick event increasing the value:

val waitingTime: Signal[Int] =
reachedFloor.reset(0) { _ =>
tick.iterate(@) { acc =>
if (isWaiting()) acc + 1 else acc

13

107

<Programming’18> Companion, April 9-12, 2018, Nice, France

The code above is hard to understand even for seasoned RP de-
velopers and requires a nested call of iterate inside a reset both
of which have semantics derived from fold. Fortunately, there is
a more idiomatic alternative when folding over multiple events.
REScala supports an extended syntax for folds, which takes a list of
events and associated update functions, to compute the next state
from the current one:

val waitingTime: SignallInt] =
Events.fold(@)(acc => Seq(
// The -> operator creates a pair
reachedFloor -> {_ => 03},
tick -> {_ => if (isWaiting()) acc + 1 else acc }

))

The extended fold states the intention more clearly. Each event is
paired with a handler function (Line 4) describing the behavior of
the fold when the corresponding event occurs. The reachedFloor
resets the state to one, and tick increments the state by one if the
elevator is currently waiting. When multiple events occur at the
same time, the handlers are executed from top to bottom.

The correct use of fold is one of the common problems we see
when developers with an imperative background write applications
with RP. However, developers seem to know that mutable state is
problematic and they try to use fold, but they often end up with
complex and hard to understand fold expressions. We believe the
issue to be a lack of available examples and references for writing
readable complex fold expressions.

3.1.2 Maintenance. For maintainability, we want to highlight
one crucial part of RP: statically known dependency relations with
automatic update propagation. As a contrived example — for the
sake of brevity — consider a door system that imperatively turns
the lights on or off, when the doors open or close:

var light = On
object DoorSystem {
def onClose() = { light = Off }
def onOpen() = { light = On }
}

Other objects rely on the state of 1ight and must be notified when
it changes, but the API does not specify how notifications happen.
With RP dependencies are made explicit, and notifications happen
automatically:

object DoorSystem {
val closed: Signal[Boolean]
}
val light = Signal {
if (DoorSystem.closed()) Off else On
}

In the updated example, the closed state of the door is a proper
part of the public API of the DoorSystem object, including the fact
that the state changes over time. The example generalizes to bigger
projects. RP operators integrate seamlessly into existing APIs, and
work with existing tools: the type system, IDE based refactoring,
linters, etc.

<Programming’18> Companion, April 9-12, 2018, Nice, France

It is possible to achieve a similar result by manually encoding
time changing values and observers into the API of an objects,
however maintaining the encoding requires discipline. In our expe-
rience with the REScala case studies, the better API design is used
in most cases by all developers.

3.1.3 Testing with Reactive Programming. Our experience with
testing in the cases studies is limited to unit tests. We observed no
particular difficulties: Testing RP is not different than testing code
in the OO paradigm. RP operators are tested at a similar granularity
as method calls, and tests exercise the operators and observe the
resulting values, using imperative accessors. For events, it is often
useful to use the 1ist operator (Lines 5, 7) to make all occurrences
of the event accessible as a list:

i val input = Evt[String]
val greeting: Event[String] =
input.map(name => s"Hello $name")
i val inputLog: Signal[List[Stringl] =
input.list()
¢ val greetinglog: Event[List[String]] =
7 greeting.list()

Nil)
== Nil)

o assert(inputLog.now() ==
10 assert(greetinglog.now()

input.fire("world")

14+ assert(inputLog.now() ==
15 assert(greetinglLog.now()

List("world"))
== List("Hello world"))

RP programs are written in a more functional style composing
behavior based on small individual functions, such as the map in
Line 3.

To test complex reactive graphs the language provides tools
similar to mock based solutions in object oriented languages. It is
possible to simulate the value of individual events or signals to test
derived operators on specific inputs. Assume that the value of some
input signal is not under control of the tests, but a derived signal
testMe is tested:

val input: Signal[String] = ...

val testMe = Signal { input().toLowerCase }
3
. reevaluate(testMe).assuming(input -> "TEST String")
5 assert(testMe.now() == "test string")

The code in Line 4 forces a reevaluation of the signal, and simulates
the values of the inputs of the signal. Using this technique allows
very fine granular tests without modifying the code to be tested,
and we believe the strategy supports testing arbitrarily complex
applications, much bigger that the examples in our case studies.

3.2 Applicability of Reactive Programming

Since its early days, RP has been applied to more domains outside
of purely functional animations. We highlight some of them, and
report how RP has adapted and grown to support the new use cases,
and how RP compares existing similar paradigms.

108

Ragnar Mogk, Guido Salvaneschi, and Mira Mezini

3.2.1 Application Domains. The REScala case studies in Table 1,
consist of interactive application domains, such as text editing, note
taking, games, and networking, and one non-interactive simulation
(Universe).

Regardless of the application domain, our case studies demon-
strate how interactive tasks are modeled in RP. We discuss examples
and highlight why RP simplifies the development of interactive
tasks. RP supports detecting gestures and other complex user input
using stateful event processing, as shown by Shapes — a drawing
application. Automatic management of state in RP allows one to
write applications with persistent state such as Todolist?, a web
application which stores a list of tasks (surviving browser restarts).
A design similar to interactive software was also valid of the Dividi
distributed ledger that merges local and remote updates using even-
tual consistent semantics. Handling network messages is similar
to handling user input, and automatic change propagation lends
itself very well to ensure the whole system becomes eventually
consistent, when all network messages are received.

On the other hand, RP has less advantages over the imperative
paradigm, in the case of non interactive applications such as the
Universe simulation. The simulation requires an update loop to
compute the next state given the current one, without the need to
process new input. The cyclic structure of the update loop is not
handled by RP. In this case, the application uses imperative code.
We believe that better integration of cyclic processes into RP is an
area that would benefits from further research.

Besides our direct experience in the case studies, it is interesting
to note that special purpose RP languages have been designed for
domains such as robotics [15], network switches [13], and wireless
sensor networks [27]. In these works, RP is used to handle the
interaction between multiple computer systems. Our conclusion
is that the concepts of RP are demonstrated to be useful in every
interactive domain, either with a general purpose or special purpose
language implementation.

3.2.2 Purity in (Functional) Reactive Programming. RP has been
initially developed in the context of pure functional languages, and
operators in RP are still free of side effects. However, imperative
languages allow to change the graph during execution. Consider
creating a button for a UL deriving a label signal that states how
often the button was clicked, and displaying the label text on the
button itself:

val button = new Button
val label: Signal[String] = button.click.count
.map(c => s"This button was clicked $c times")

label.observe(txt => button.text = txt)

The last line sets the text of the button when the label changes —
an imperative interaction not allowed in a pure language. In pure
languages, the label text of the button has to be provided when the
button is created, which leads to a cyclic definition (button depends
on label, and label on button). A solution is shown in the following
code example where the handler is registered as part of the button
creation, and no imperative change is required:

2Todolist is an implementation of http://todomvc.com/.

http://todomvc.com/

Reactive Programming Experience with REScala

def pipeline(click: Event[Unit]): Signal[String]
click.count
.map(c => s"This button was clicked $c times")

val button = new Button(pipeline)

We provide a function to the button, and the function describes
the pipeline to process the button clicks. With this approach the
created pipeline is private to the button. To share events and signals
between multiple UI components (buttons, labels, etc.), they all have
to be initialized together with a combined and predefined pipeline
of operators. As a result, purely functional RP languages often only
limited use cases, like one animation, or a single UI window. Elm®
applied FRP to larger web applications. However, to keep purity the
RP abstractions were removed from Elm, as they suffered from the
problems we explained. In REScala we make the opposite choice and
sacrificed purity to keep the abstractions of RP and integrate them
with imperative applications. The integration allows programmers
to add and reconnect events and signals as required.

3.2.3 REScala Libraries. Motivated by the need to develop case
studies for REScala in various domains, we have been working on
a number of libraries, including UI libraries, collections, libraries
for distribution, concurrency, and fault tolerance.

Many such libraries are implemented on top of REScala, using the
API. Examples include the integrations with Swing and JavaFX, both
of which use the APIs for imperative handlers to bridge between
the Java Ul libraries, and the RP language.

For a number of libraries we took an approach that we call shal-
low reactivity where a wrapper exposing the reactive abstractions
is added to the original library API. As an example, consider Swing,
the Java graphic library. The REScala RESwing library provides
Swing component with reactive operators, e.g., an input field is a
signal holding the current text inserted by the user. The reactive
library is a wrapper around Java Swing components, and uses them
internally. Wrapping the internals of Swing allows RP developers
to directly use values and components provided by RESwing, with-
out the necessity to use imperative code to manage updates. RP is
well suited to express interactions with UI libraries, and modern
libraries such as JavaFX and the HTML DOM have interfaces that
are designed on RP concepts.

However, designing reactive collections as a wrapper results in
operators having wildly unexpected runtime behavior. For example,
consider our collection library. In this case, adding an element to a
list is expected to be a cheap operator prepending a new node to the
list. When adding to the wrapped list, however, derived properties
such as the size of the list are recomputed. The recomputation
traverses the full list and counts all elements, because the reactive
wrapper library does not use knowledge about the internal behavior
of collections.

In this case, a better approach is to integrate RP with the internal
code of collections, to enable incremental behavior for derived
operators, as shown by the reactive lists of Maier [19]. The resulting
library is used similar to the wrapper library, but with efficient
incremental updates.

3Elm is the full version of FEIm [8]

109

<Programming’18> Companion, April 9-12, 2018, Nice, France

3.2.4 Reactive Programming vs. Stream Processing. Stream pro-
cessing systems such as Spark [42] or Flink [1] and to a lesser extend
also reactive extensions [18] provide an API that looks similar to
RP* on the surface, but with different semantics and use cases.

As we discussed in Section 2, RP is concerned with the current
state of an application now, and provides a fundamentally synchro-
nous view on changes at each point in time. Stream processing, on
the other hand, is concerned with individual asynchronous data
elements combined in streams. Multiple changes that occur at the
same time are a priori unrelated in streaming systems, and the use
of special operators is required to correlate inputs. Streaming oper-
ators are allowed to rearrange, group, and aggregate input streams,
because there is no inherent relation among inputs that occur at
the same time.

As a price for the flexibility when processing individual inputs,
stream processing systems do not offer signals and provide no
glitch freedom. The lack of a consistent view on state of multiple
inputs, makes common interactive tasks hard to express. Recurring
tasks in our case studies, such as “when the mouse is dragged,
draw the selected shape in the current color and line width”, are
straightforward to express in RP but have no simple equivalent in
stream processing.

3.3 Reactive Languages

As with any language RP evolves with its usage. In this section we
discuss considerations when designing an RP language, and show
how our case studies guide the design of the language.

3.3.1 API Size. We discuss multiple RP languages and the size
of their APIs, and how API design relates to the intended use cases
and concepts.

FEIm [8] is designed for asynchronous composition of GUISs,
and requires three operators for this purpose, combining signals,
folding over past values, and making a computation asynchronous.
Fran [11] is designed for animations, a similar use case to FEIm. Fran
does not include asynchronous computations, but has operators for
transforming time, and dynamically recombining signals, required
to change the speed and behavior of animations. In total, the Fran
API lists around 10 to 20 operators in the API, including some minor
variations of common operators.

In contrast, reactive extensions [18], includes operators specific
to collections, asynchronous execution, and mathematical aggre-
gation. The result is a library with over 450 operators, 80 of which
are considered core operators’.

REScala does not target a specific application domain, and in-
cludes operators for combining events, signals, and converting
between the two, as well as operators which integrate with im-
perative code. On the other hand, REScala refrains from including
operators for a specific domain, such as mathematical aggregations.
In total REScala has an API size of around 40 operators. About half
are convenience operators for events, which form a small event pro-
cessing sub language. The inclusion of operators into the REScala

4Sometimes stream processing is also called RP. Here we talk about the kind of RP as
implemented by REScala.

SCore operators are those that exist not only because of multiple overloads, such
as averagelnteger and averageDouble, see http://reactivex.io/documentation/
operators.html

http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html

<Programming’18> Companion, April 9-12, 2018, Nice, France

Figure 1: Creating a cycle

API is driven by our case studies. Most of the REScala operators
are generic and used in multiple case studies - their usage is not
limited to specific domains. Other operators such as list (c.f,, Sec-
tion 3.1.3) are mainly used during testing, but are so useful there to
warrant their inclusion. The case studies often derive more complex
or specific operators from the basic ones, however none of them
are common enough to warrant inclusion into REScala. Some com-
monly useful operators for a specific domain are offered in libraries,
(c.f., Section 3.2.3).

3.3.2 API Design. RP languages minimize the number of con-
cepts necessary to use their API, exposing only events and signals
abstractions to programmers. As we discuss in Section 3.3.1, RP
languages offer a rich set of operators in their API, building on top
of events and signals. The derived operators have a semantics that is
expressible as (a combination of) basic concepts and such semantics
in REScala directly corresponds to the operator implementation.

For example, consider the || operator in REScala, which is de-
rived from the following event expression:

def || [Al(a: Event[A], b: Event[A]): Event[A] =
Event { if (a().nonEmpty) a() else b() }

Accessing the value of an event inside an event expression, yields
a Option representing the fired value. The event expression above
defines, that the result of a || b is a new event e with the following
behavior: If a fires a value (is nonEmpty), then e fires the value of a,
otherwise e fires the value of b (if b is also empty, then e does not
fire). Specifying operators using a small core set of concepts, makes
the language much more accessible for novices and allows one to
easily explain the semantics of complex programs.

3.3.3 Cycles. RP languages require that the dependency graph
is acyclic to ensure that propagation terminates®, but most RP
languages do not statically enforce the graph to be acyclic. However,
problems with cycles only occur rarely in practice. Consider the
following code to create a cycle between signals a and b:

val a =
val b =

Signal { b() + 1 }
Signal { a() - 1}

®Limited and controlled cycles are permissible, if the cyclic computation reaches a
stable state and terminates.

110

Ragnar Mogk, Guido Salvaneschi, and Mira Mezini

Figure 1(A) shows the cycle the code is supposed to create to create.
However, the code does not compile for a RP language like REScala,
because the embedding language prevents cyclic definitions of
variables. To create a cyclic graph, imperative code is used”:

val h = Var(Signal(@))

val a = Signal { hQO + 1}
val b = Signal { a() - 1 }
h.set(b)

Figure 1(B) illustrates this approach. The first line creates a helper
Var (h) containing the constant signal with value 0. The signal a
depends on h and the inner value of h — h() accesses the value of
h and h() () additionally accesses the inner value. and the last line
changes h to point to b.

Code that explicitly sets vars to other reactives is rare in practice.
In our case studies, we find that only the universe simulation and
the pong game have the potential for cycles. In both cases, the cycle
is related to the update steps of the simulation, i.e., the position
of the pong ball depends on the speed, and the speed depends on
the position (the speed changes when the ball bounces of a wall).
Cycles are part of the domain model of simulations, and in the case
studies it is explicitly avoided to create cyclic graphs.

4 CONCLUSION

In recent years, RP has gained popularity with several proposals for
languages embracing the reactive paradigm both in the academia
and in industry. This paper addresses the lack of information avail-
able on the programming experience with reactive languages, pro-
viding insights on the design of the languages themselves, on the
problems that developers encounter when using this paradigm, as
well as on the application domains for which RP is effective.

Our experience with RP indicates efficient applicability in the
domain of interactive applications and properly supports library
modularization, testing and static typing. These observations show
the potential of RP for supporting larger applications where main-
tenance is a challenge — a research line which we are actively
investigating.

5 RELATED WORK

In the area of the implementation of RP languages, Ramson and
Hirschfeld recently proposed Active Expressions [31] as a funda-
mental primitive for different RP implementations.

Tool support has lead to debuggers that specifically target RP [2,
35]. These debuggers adopt the dependency graph or a visualization
of event streams as the model provided to developers to debug RP
programs.

The use of RP has been investigated in specific application do-
mains, e.g., the simulation of autonomous vehicles [12]. In some
cases, the peculiarities of the application domain led to RP imple-
mentations tailored to embedded systems [37], IoT [4], robotics [15],
network switches [14], and wireless sensor networks [27]. RP has
also received formal treatment [16, 17].

7Lazy initialization is an alternative to using explicit side effects.

Reactive Programming Experience with REScala

A recent focus of RP is distribution [5, 9, 20, 23, 25, 32, 39]. Re-
search includes new consistency models, such as eventual consis-
tency via CRDTs for replicated signals [24] and notions of relaxed
glitch freedom that account for an error margin [30]. Also, in the
area of distributed RP, researchers proposed mechanisms to achieve
fault tolerance. Leased signals [26] enable reacting to a partial fail-
ure when a remote host does not produce a value after a timeout.
Recent investigations of fault tolerance in REScala support to store
and recover program state upon failures, automatically update and
share distributed parts of the state providing eventual consistency,
and handle errors when programmer control is necessary [22].

ACKNOWLEDGMENTS

We thank all contributors to REScala and related projects. This
work has been supported by the LOEWE initiative (Hessen, Ger-
many) within the NICER project, by the European Research Council,
advanced grant No. 321217, by the German Research Foundation
(DFG) as part of projects A2 and C2 within the Collaborative Re-
search Center (CRC) 1053 - MAKI, and by the DFG project SA
2918/2-1.

REFERENCES

[1] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Frey-
tag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker
Markl, Felix Naumann, Mathias Peters, Astrid Rheinlinder, Matthias Sax, Sebas-
tian Schelter, Mareike Hoger, Kostas Tzoumas, and Daniel Warneke. 2014. The
Stratosphere platform for big data analytics. VLDB 23 (2014).

Herman Banken, Erik Meijer, and Georgios Gousios. 2018. Debugging Data-
Flows in Reactive Programs. In Proceedings of the 39th International Conference
on Software Engineering (ICSE ’18). ACM, New York, NY, USA.

Elisa Gonzalez Boix, Kevin Pinte, and Wolfgang De Meuter. 2013. Object-oriented
Reactive Programming is Not Reactive Object-oriented Programming. (2013).
http://soft.vub.ac.be/Publications/2013/vub- soft-tr-13-16.pdf

Ben Calus, Bob Reynders, Dominique Devriese, Job Noorman, and Frank Piessens.
2017. FRP IoT Modules as a Scala DSL. In Proceedings of the 4th ACM SIGPLAN In-
ternational Workshop on Reactive and Event-Based Languages and Systems (REBLS
2017). ACM, New York, NY, USA, 15-20.

Andoni Lombide Carreton, Stijn Mostinckx, Tom Van Cutsem, and Wolfgang
De Meuter. 2010. Loosely-coupled Distributed Reactive Programming in Mobile
Ad Hoc Networks. In Proceedings of the 48th International Conference on Objects,
Models, Components, Patterns (TOOLS’10). Springer-Verlag, Berlin, Heidelberg,
41-60. http://dl.acm.org/citation.cfm?id=1894386.1894389

Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding Dynamic
Dataflow in a Call-by-Value Language. In Lecture Notes in Computer Science.
https://doi.org/10.1007/11693024_20

Antony Courtney. 2001. Frappé: Functional Reactive Programming in Java. In
PADL °01 Proc. Third Int. Symp. Pract. Asp. Declar. Lang. 29-44. https://doi.org/
10.1007/3-540-45241-9_3

Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional Reactive
Programming for GUIs (PLDI °13). ACM. https://doi.org/10.1145/2491956.2462161
[9] Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini. 2014.
Distributed REScala: An Update Algorithm for Distributed Reactive Program-
ming (OOPSLA °14). ACM, New York, NY, USA. https://doi.org/10.1145/2660193.
2660240

Conal Elliott. 2009. Push-pull functional reactive programming. Proc. 2nd ACM
SIGPLAN Symp. Haskell - Haskell 09 (2009), 25. https://doi.org/10.1145/1596638.
1596643

Conal Elliott and Paul Hudak. 1997. Functional reactive animation, Vol. 32. ACM.
https://doi.org/10.1145/258948.258973

Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito. 2017. Vehicle
Platooning Simulations with Functional Reactive Programming. In Proceedings
of the 1st International Workshop on Safe Control of Connected and Autonomous
Vehicles (SCAV’17). ACM, New York, NY, USA, 43-47.

Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. 2011. Frenetic: A Network Programming
Language. SIGPLAN Not. 46, 9 (Sept. 2011). https://doi.org/10.1145/2034574.
2034812

Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. 2011. Frenetic: a network programming

[2

=

8

[10

(11

[12]

[13

[14

111

[15

[16

=
=

[18

[19]

[20

[21]

~
£,

[23

[24

[27]

[28

[29]

[31

[32

[33

&
=)

[35

[36

<Programming’18> Companion, April 9-12, 2018, Nice, France

language. In Proceedings of the 16th ACM SIGPLAN international conference on
Functional programming (ICFP ’11). ACM, New York, NY, USA, 279-291. https:
//doi.org/10.1145/2034773.2034812

Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. 2003. Arrows,
Robots, and Functional Reactive Programming. In Summer School on Advanced
Functional Programming 2002, Oxford University (Lecture Notes in Computer Sci-
ence), Vol. 2638. Springer-Verlag, 159-187.

Alan Jeffrey. 2012. LTL Types FRP: Linear-time Temporal Logic Propositions
As Types, Proofs As Functional Reactive Programs. In Proceedings of the Sixth
Workshop on Programming Languages Meets Program Verification (PLPV ’12). ACM,
New York, NY, USA, 49-60. https://doi.org/10.1145/2103776.2103783

Tetsuo Kamina and Tomoyuki Aotani. 2018. Harmonizing Signals and Events
with a Lightweight Extension to Java. The Art, Science, and Engineering of
Programming, 2018, Vol. 2, Issue 3, Article 5. (2018). https://doi.org/10.22152/
programming-journal.org/2018/2/5

Jesse Liberty and Paul Betts. 2011. Programming Reactive Extensions and LINQ.
Apress.

Ingo Maier and Martin Odersky. 2013. Higher-Order Reactive Programming with
Incremental Lists (ECOOP’13). https://doi.org/10.1007/978-3-642-39038-8_29
Alessandro Margara and Guido Salvaneschi. 2014. We Have a DREAM: Dis-
tributed Reactive Programming with Consistency Guarantees (DEBS '14). ACM,
New York, NY, USA. https://doi.org/10.1145/2611286.2611290

Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael
Greenberg, Aleks Bromfield, and Shriram Krishnamurthi. 2009. Flapjax: A
Programming Language for Ajax Applications, Vol. 44. ACM Press. https:
//doi.org/10.1145/1640089.1640091

Ragnar Mogk, Lars Baumgirtner, Guido Salvaneschi, Bernd Freisleben, and Mira
Mezini. 2018. Fault Tolerance in Interactive Applications. In European Conference
on Object-Oriented Programming (ECOOP 2018). Dagstuhl, Germany.

Florian Myter, Tim Coppieters, Christophe Scholliers, and Wolfgang De Meuter.
2016. I now pronounce you reactive and consistent: handling distributed and
replicated state in reactive programming. New York, New York, USA. https:
//doi.org/10.1145/3001929.3001930

Florian Myter, Tim Coppieters, Christophe Scholliers, and Wolfgang De Meuter.
2016. I Now Pronounce You Reactive and Consistent: Handling Distributed and
Replicated State in Reactive Programming. In Proceedings of the 3rd International
Workshop on Reactive and Event-Based Languages and Systems (REBLS 2016). ACM,
New York, NY, USA, 1-8.

Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. 2017. Handling
Partial Failures in Distributed Reactive Programming. 4th Workshop on Reactive
and Event-based Languages & Systems (2017).

Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. 2017. Handling
Partial Failures in Distributed Reactive Programming. In Proceedings of the 4th
ACM SIGPLAN International Workshop on Reactive and Event-Based Languages
and Systems (REBLS 2017). ACM, New York, NY, USA, 1-7.

Ryan Newton, Greg Morrisett, and Matt Welsh. 2007. The Regiment Macropro-
gramming System. In 2007 6th International Symposium on Information Processing
in Sensor Networks. IEEE. https://doi.org/10.1109/IPSN.2007.4379709

Henrik Nilsson, Antony Courtney, and John Peterson. 2002. Functional reactive
programming, continued. In Proc. ACM SIGPLAN Work. Haskell - Haskell "02.
ACM Press, 51-64. https://doi.org/10.1145/581690.581695

John Peterson, Valery Trifonov, and Andrei Serjantov. 2000. Parallel func-
tional reactive programming. 16-31. http://link.springer.com/chapter/10.1007/
3-540-46584-7_2

José Proenca and Carlos Baquero. 2017. Quality-Aware Reactive Programming for
the Internet of Things. In Fundamentals of Software Engineering - 7th International
Conference, FSEN 2017, Tehran, Iran, April 26-28, 2017, Revised Selected Papers
(Lecture Notes in Computer Science), Mehdi Dastani and Marjan Sirjani (Eds.),
Vol. 10522. Springer, 180-195.

Stefan Ramson and Robert Hirschfeld. 2017. Active Expressions: Basic Building
Blocks for Reactive Programming. CoRR abs/1703.10859 (2017). arXiv:1703.10859
Bob Reynders, Dominique Devriese, and Frank Piessens. 2014. Multi-Tier Func-
tional Reactive Programming for the Web. In Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software (Onward! 2014). ACM, New York, NY, USA, 55-68.
https://doi.org/10.1145/2661136.2661140

Guido Salvaneschi, Sven Amann, Sebastian Proksch, and Mira Mezini. 2014. An
Empirical Study on Program Comprehension with Reactive Programming (FSE
2014). ACM, 564-575. https://doi.org/10.1145/2635868.2635895

Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala: Bridging
Between Object-oriented and Functional Style in Reactive Applications (MODU-
LARITY °14). ACM. https://doi.org/10.1145/2577080.2577083

Guido Salvaneschi and Mira Mezini. 2016. Debugging for Reactive Programming.
In Proceedings of the 38th International Conference on Software Engineering (ICSE
’16). ACM, New York, NY, USA, 796-807.

Guido Salvaneschi, Sebastian Proksch, Sven Amann, Sarah Nadi, and Mira Mezini.
2017. On the Positive Effect of Reactive Programming on Software Comprehen-
sion: An Empirical Study. IEEE Trans. Softw. Eng. 43, 12 (Dec. 2017), 1125-1143.

http://soft.vub.ac.be/Publications/2013/vub-soft-tr-13-16.pdf
http://dl.acm.org/citation.cfm?id=1894386.1894389
https://doi.org/10.1007/11693024_20
https://doi.org/10.1007/3-540-45241-9_3
https://doi.org/10.1007/3-540-45241-9_3
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2660193.2660240
https://doi.org/10.1145/2660193.2660240
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1145/258948.258973
https://doi.org/10.1145/2034574.2034812
https://doi.org/10.1145/2034574.2034812
https://doi.org/10.1145/2034773.2034812
https://doi.org/10.1145/2034773.2034812
https://doi.org/10.1145/2103776.2103783
https://doi.org/10.22152/programming-journal.org/2018/2/5
https://doi.org/10.22152/programming-journal.org/2018/2/5
https://doi.org/10.1007/978-3-642-39038-8_29
https://doi.org/10.1145/2611286.2611290
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/3001929.3001930
https://doi.org/10.1145/3001929.3001930
https://doi.org/10.1109/IPSN.2007.4379709
https://doi.org/10.1145/581690.581695
http://link.springer.com/chapter/10.1007/3-540-46584-7_2
http://link.springer.com/chapter/10.1007/3-540-46584-7_2
http://arxiv.org/abs/1703.10859
https://doi.org/10.1145/2661136.2661140
https://doi.org/10.1145/2635868.2635895
https://doi.org/10.1145/2577080.2577083

<Programming’18> Companion, April 9-12, 2018, Nice, France

[37] Kensuke Sawada and Takuo Watanabe. 2016. Emfrp: A Functional Reactive Pro-

gramming Language for Small-scale Embedded Systems. In Companion Proceed-

ings of the 15th International Conference on Modularity (MODULARITY Companion

2016). ACM, New York, NY, USA, 36-44.

Neil Sculthorpe and Henrik Nilsson. 2009. Safe functional reactive programming

through dependent types. ACM Sigplan Not. 44, 9 (2009), 23-34. http://dl.acm.

org/citation.cfm?id=1596558

[39] Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide
Carreton, Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. 2014. AmbientTalk:
programming responsive mobile peer-to-peer applications with actors. Computer
Languages, Systems & Structures 40, 3-4 (Oct. 2014). https://doi.org/10.1016/j.cl.
2014.05.002

[40] Atze van der Ploeg and Koen Claessen. 2015. Practical principled FRP: forget
the past, change the future, FRPNow! ACM, 302-314. http://dl.acm.org/citation.

[38

112

[41

[42

Ragnar Mogk, Guido Salvaneschi, and Mira Mezini

cfm?id=2784752

Zhanyong Wan and Paul Hudak. 2000. Functional reactive programming from
first principles. ACM SIGPLAN Notices 35 (2000). https://doi.org/10.1145/358438.
349331

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). USENIX Association, Berkeley, CA, USA.
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

http://dl.acm.org/citation.cfm?id=1596558
http://dl.acm.org/citation.cfm?id=1596558
https://doi.org/10.1016/j.cl.2014.05.002
https://doi.org/10.1016/j.cl.2014.05.002
http://dl.acm.org/citation.cfm?id=2784752
http://dl.acm.org/citation.cfm?id=2784752
https://doi.org/10.1145/358438.349331
https://doi.org/10.1145/358438.349331
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

	Abstract
	1 Introduction
	2 Reactive Programming Background
	2.1 REScala
	2.2 A Note on Scala Syntax

	3 Programming Experience
	3.1 Idioms and Patterns
	3.2 Applicability of Reactive Programming
	3.3 Reactive Languages

	4 Conclusion
	5 Related Work
	Acknowledgments
	References

